Genetic Modification of the Soybean to Enhance the β-Carotene Content through Seed-Specific Expression
نویسندگان
چکیده
The carotenoid biosynthetic pathway was genetically manipulated using the recombinant PAC (Phytoene synthase-2A-Carotene desaturase) gene in Korean soybean (Glycine max L. cv. Kwangan). The PAC gene was linked to either the β-conglycinin (β) or CaMV-35S (35S) promoter to generate β-PAC and 35S-PAC constructs, respectively. A total of 37 transgenic lines (19 for β-PAC and 18 for 35S-PAC) were obtained through Agrobacterium-mediated transformation using the modified half-seed method. The multi-copy insertion of the transgene was determined by genomic Southern blot analysis. Four lines for β-PAC were selected by visual inspection to confirm an orange endosperm, which was not found in the seeds of the 35S-PAC lines. The strong expression of PAC gene was detected in the seeds of the β-PAC lines and in the leaves of the 35S-PAC lines by RT-PCR and qRT-PCR analyses, suggesting that these two different promoters function distinctively. HPLC analysis of the seeds and leaves of the T(2) generation plants revealed that the best line among the β-PAC transgenic seeds accumulated 146 µg/g of total carotenoids (approximately 62-fold higher than non-transgenic seeds), of which 112 µg/g (77%) was β-carotene. In contrast, the level and composition of the leaf carotenoids showed little difference between transgenic and non-transgenic soybean plants. We have therefore demonstrated the production of a high β-carotene soybean through the seed-specific overexpression of two carotenoid biosynthetic genes, Capsicum phytoene synthase and Pantoea carotene desaturase. This nutritional enhancement of soybean seeds through the elevation of the provitamin A content to produce biofortified food may have practical health benefits in the future in both humans and livestock.
منابع مشابه
Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds.
Experimental approaches targeting carotenoid biosynthetic enzymes have successfully increased the seed β-carotene content of crops. However, linkage analysis of seed carotenoids in Arabidopsis thaliana recombinant inbred populations showed that only 21% of quantitative trait loci, including those for β-carotene, encode carotenoid biosynthetic enzymes in their intervals. Thus, numerous loci rema...
متن کاملTransgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.
Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an in...
متن کاملAssessment of seed storage protein composition of six Iranian adopted soybean cultivars [Glycine max (L.) Merrill.]
Seed protein quality is an important topic in the production of soybean. The quality of soybean proteins is limited by anti-nutrient proteins and low levels of essential sulfur amino acids. In this study, protein content and solubility of six cultivars were evaluated and seed storage proteins were analyzed using SDS-PAGE and scanning densitometry. The results showed that seed storage protein ba...
متن کاملSelectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملEvaluation of the Quality of Beta-Carotene Derived from Azolla Filiculoides in the Anzali Wetland Using the Organic Solutions Method in Autumn
Background and Objectives: Beta-carotene was prepared from Azolla by Lejeune et al. (2000). Beta carotene production from Azolla filiculoides in the Anzali wetland has not been investigated in Iran so far. The present project was aimed at determining the content, quality, and purity of β-carotene extracted from Azolla filiculoides in the Anzali Wetland, and comparing it with synthetic β-caroten...
متن کامل